REUTERS B

Optimizing Data Retrieval in MIX

Reuters Market Information Express

Prepared by: Jim Foley A A YA YA YA,
Date: July 2004, July 2005 N N

Copyright © 2005 Reuters Limited. All rights reserved. Reuters and the Sphere Logo are trademarks and
registered trademarks of the Reuters Group of Companies around the world.

REUTERS

SCOPE AND TARGET AUDIENCE

This document describes a number of approaches to improving MIX server performance by
minimizing data retrieval time. Topics include pipelining, cache duration, preloading, and
prefetching. A summary is provided.

Throughout this paper, the term "MIX" is used for the product line sometimes called "BIT", and
the terms "BBC" and "RLSR" are used more or less interchangeably.

This is a technical document for Reuters solutions developers, application developers, and
technical relationship managers. Client technical staff may find this information useful in
decision-making or configuration.

Related information may be found in the whitepapers "Response and Throughput Standards",
"Caching Overview", and "Caching Views and Analytics in MIX" as well as the MIX and RLSR
installation manuals and the MIX Developer's Guide. Readers interested in how "streaming"
data is cached should consult the whitepaper "The RMIX Electrified Datastream".

CONTENTS

INTRODUCTION ...ttt e st e e e e s s b et e e e e s s s bbb e e e e e e s s s s s b e e e e e e e e s s nneae e s 1
PIPELINING ...ttttete e ettt ettt ettt e e e ettt e e e e e ettt e e e e e st e et e e e e e e e e e e e e e e e nnrneees 1
USING PIPEIINING .. eeeeeeeeiit ettt e e e et e e e e et e e e e e e e e eabbeeeeaeeeaan 2
Sequencing 0N retrieVal tIMEooiiiiii e 3
Checking @ retrieVal STATUSooiiiiiiiie e 3
MIX SUPPOIt fOr PIPEINING ...t
MANAGING THE CACHE..................
Setting the cache duration
Global CACNE AUIALION.........eeiiiiiiie et 5
Cache durations in individual ObJeCt INSTANCESeveviiiiiiiiiieee e 5
Preloading the CACNE...........oo e 5
THE Preload lISt.... ...t e e e e e e e e e e e aaaees 6
Preloading While @XeCULING @ PAGE ... cviiiiiiiiiiieii ettt 6
PREFETCHING FIELDS ...vvttttieeiiiittteeeteeesaaisttseeeeeesaassnne et e e e s e asennne e e e e e e sassnneeeeesenasnnneeeeeeessannrnneeas 6
Large fIElarEES.ttt a e e e e e e e aaeee 7
HIGN VOIUME .ttt e e e e ettt e e e e e e e nab e e e e e e e e e aanees 7

Large fields
Other notes
SUMMARY ..ttt
SAMPLE SCRIPTS ..utututttttuiutatatstseaesessssssssssss s
Pipelining example
Instrument subscription time

REUTERS

Introduction

Generally speaking, MIX objects are about data retrieval. Their job is to retrieve and display
such things as market data, headlines, and so on, from a remote data service. When we think
about this in terms of performance, it's clear that if we can speed up the retrievals, we can
speed up the display time of any given web page. What may be less obvious is how
significantly this can affect the overall performance of the MIX server.

To fully appreciate the benefit, consider the life of the common web server. A limited pool of
threads — typically twenty — is allocated to handling page requests. As each incoming request
is filled, its thread is returned to the pool, and from there it is allocated to another request. We
can imagine that there might sometimes be hundreds of requests queued up, but only twenty
can be processed at a time. This is true even if the system is experiencing idle processor time,
which leads to the question: why only twenty threads? Why not a hundred? The answer, of
course, is that each additional thread creates additional overhead and additional liability.
Having too many threads will mean the system sometimes gets overloaded.

Rather than increasing the number of available threads, it's better to smooth out the workload
by designing pages that have as little idle time as possible. If each page finishes quickly,
threads return to the pool quickly and the server can handle more requests. This paper
describes several techniques that let MIX pages spend less time waiting for data, leading to
both a faster page experience and better overall performance of the MIX server.

Pipelining
In MIX, "pipelining" refers to a technique of overlapping data retrievals as a way to minimize

the effects of network latency. It works only with static-mode requests, and only with objects
that have been enabled for pipelining, but it can cut execution time by half or more.

Figure 1 shows the timing of a non-pipelined MIX request and response. The Retrieve()
method sends a data request upstream, then waits for the response before returning control.

CreateObject...
Setlnput...
Setlnput...
Setlnput...
Retrieve...

- <):| Display...
Client -

Figure 1 — Un-optimized method. The Retrieve() method blocks as long as

the request and response are in the pipeline (the area outside the triangle).

Optimizing Data Retrieval in MIX

July 2005 page 1

Optimizing Data Retrieval in MIX
July 2005

REUTERS

We say that the Retrieve() method blocks, or halts execution of the page, during the time
between sending the request and receiving the response. The thread is idle during this latency
period.

In MIX 3.x, many objects are now "pipeline-enabled", meaning that they do not block on the
Retrieve() call. Instead, they simply send the retrieval request upstream and immediately
return control. As long as there is no attempt to display or otherwise process the requested
data (which we know is still upstream, "in the pipeline"), the thread can continue executing the
page. No blocking will occur until an extraction call is issued — i.e., Display(), Value(), and so
on. (Of course, these methods must have data to work with, so if the data hasn't arrived in the
local cache yet, they have to wait for it).

With pipeline-enabled objects, we leverage this trait of non-blocking retrieval by issuing a
series of retrievals in rapid succession. This puts multiple data requests into the pipeline at the
same time. When we subsequently issue a series of Display() calls for these retrievals, only
the first one is likely to have to wait for data, because all the responses will come back out of
the pipeline at about the same time. Latency is not eliminated, but it is reduced because all
the latencies transpire concurrently. It's the difference between retrievals occurring one after
the other, versus all at the same time. When we speak of "pipelining", we are generally
referring to this technique of multiple, simultaneous retrievals.

Using pipelining

The following two code excerpts demonstrate the technique. Assuming an average network
latency of ¥ second for a given site, the first example would take slightly over ¥2 second to
execute, compared to just over ¥ second for the second example.

/I This code is relatively inefficient:

/I InstrumentFundamental

InstF.SetInput(...);

InstF.Retrieve(); /I request goes into the pipe
InstF.Display(...); /I wait ¥4 second for response

/I NewsSearch

News.SetInput(...);

News.Retrieve(); /I request goes into the pipe
News.Display(...); // wait %2 second for response

// This code is more efficient:

News.SetInput(...);
InstF.SetInput(...);

// retrieve
InstF.Retrieve(); // request goes into the pipe
News.Retrieve(); // request goes into the pipe

page 2

REUTERS

// display
InstF.Display(...); // wait ¥4 second for response
News.Display(...); // probably will not have to wait

Sequencing on retrieval time

This tremendous gain in server capacity can be tweaked a little further, if we remember that
not all retrievals are equal. Performing a static news search, for instance, typically takes
longer than retrieving a specific news story by its story ID. So if we're doing both in the same
page, we take advantage of the different retrieval times by starting the slowest retrieval first.

/I retrieve

NewsSearchObj.Retrieve(); I slowest retrieval goes into the pipe first
NewsStoryObj.Retrieve(); /I fastest retrieval goes into the pipe last
/I display

NewsStoryObj.Display(...); [l ideally, fastest retrieval is displayed first
NewsSearchObj.Display(...); /I and slowest retrieval is displayed last

A more complete sample script, included at the end of this document, demonstrates pipelining
technique and may help estimate the potential time savings.

Checking aretrieval status

Since the only way to check the status of a Retrieve() is to wait for the data to arrive, in
pipeline-enabled objects the Status() and StatusString() methods block if a retrieval is pending.
(In fact, nearly all the helper functions will block in a pipeline-enabled object.) It's important to
be aware of this. Following a retrieval with an immediate status check causes the object to
behave as it did before it was pipeline-enabled. The answer in most cases will be to check the
retrieval status just prior to issuing a Display(), Value(), or other extraction call.

MIX support for pipelining
As of MIX version 3.6.5, a dozen objects are "pipelined". The following table lists the objects
and shows which version introduced pipelining support for them.

Table 1: Objects that support standard pipelining.

Prior to 3.6.0 Version 3.6.0 Version 3.6.5
InstrumentFundamental LookupByAlias CompanyList
NewsSearch Collection LookupBySymbol
NewsStory RapidProxy LookupByName
NewsCategories
NewsSources

Optimizing Data Retrieval in MIX

July 2005 page 3

REUTERS

Note that the Instrument object is not on the list of pipelined objects. Static Instrument
requests do not follow the request/response model — that is, not in the normal sense of a
request going to the central system and a response coming back. Instead, a Retrieve() for any
instrument data (assuming it is not found in the cache) simply subscribes the local cache to
continuing updates for that instrument, and all requests are then served from the cache. The
Retrieve() blocks until the data begins to arrive, at which point it grabs what it needs from the
cache and returns. The cache continues to receive updates for a configurable period of time,
during which the latest data on that vehicle is available to any local client who requests it. This
approach blurs the usual distinction between static and dynamic data, and in practice means a
high percentage of Instrument requests are serviced locally from cache. For this and other
reasons, pipelining as described in this paper is not enabled for the Instrument object.

Managing the cache

The caching system is described in considerable detail in the paper "Caching Overview", but
worth a quick mention here. In general, we can say that the RLSR and the MIX attempt to
service data requests from cache whenever possible. A "cache hit" is much faster than a
roundtrip to the central system to retrieve data. With this in mind, there are several ways of
optimizing the use of the cache to reduce idle time.

Setting the cache duration

For static data requests, caching involves holding the results of a request for some period of
time, in case an identical request appears within that period. For dynamic data requests,
caching involves maintaining a subscription for some period of time after the last client has lost
interest, in case another client wants data from the same subscription. The period of time in
both cases, referred to as the "cache duration", is configurable. We can also configure the size
of the cache, so that it can hold more or fewer items. By increasing the cache size and
duration, we increase the likelihood of a given item being found in the cache. This results in
faster responses and fewer upstream requests.

Of course, this speed and efficiency comes at a cost. With a static item, such as a news story
or an analytic chart, the faster answer contains slightly-older information. With a dynamic item,
such as a streaming series of trades, we're committing some bandwidth to receiving updates
for an item long after anyone's actually interested in it. (Of course, with a low-interest item,
updates are often fairly infrequent.) And with both static and streaming data, we're using cache
space to store data that may never be requested.

There's another caveat, one that involves data authorization. Every data item must be
authorized, i.e. approved for use by that client. (See "Authorization in RDN" and "Authorization
in RAPID" for more on this.) With subscription data, this takes place at the MIX server, but with
request/response transactions, it typically happens upstream at the central database. If a
cache hit is intended to avoid the upstream trip, how do we deal with authorization? It gets a
little tricky here. The system assumes that an identical request, made with the same user
number or an identical authorization profile, would return exactly the same data within the

Optimizing Data Retrieval in MIX
July 2005 page 4

REUTERS

cache duration period. So it caches the information it needs to leverage this assumption. The
MIX server caches the user number with the data, and the RLSR caches the profile with the
data. Subsequent identical requests, if they have an identical user number or profile, can thus
be served from the cache, assuming that they occur within the cache duration period and the
item hasn’t been purged due to cache size limits.

What are the chances that a request, say for a popular news story, will occur repeatedly with
the same user number? Very high, if the site uses auto-login, a feature that automatically
assigns every user the same ID and authorization profile. (See "Packages and User Login" in
the MIX Developer's Guide for more on this.)

Sites that prefer not to use auto-login can achieve similar caching efficiencies by using simple
permissions structures (a “role” approach) — for instance, three levels of users, based on three
authorization profiles. With this approach, on the MIX servers the cache duration for static
items is set to zero, forcing static requests up to the RLSR cache. There we might expect the
cache to contain three copies of the popular news story, each associated with one of the three
profiles. On such a site, no matter how frequently users request the story, the RLSR will
request a fresh copy from upstream only after the cache duration runs out — say, every five
minutes.

Global cache duration Objects that support

Optimizing Data Retrieval in MIX
July 2005

Cache duration and size are set in configuration files on the RLSR,
BBC, and MIX server. There, each object has its own settings for
cache duration, with separate settings for dynamic data. Details are
found in the paper "Caching Views and Analytics in MIX", the
"Caching Overview" paper, and the relevant installation guides.

Cache durations in individual object instances

A number of MIX objects support a ".Cache_Duration" field —
generally, the objects that request data that can be cached. This
allows the solution developer to specify a cache duration for an
individual data request. As suggested in the "Caching Overview"
paper, this might be an effective approach for caching a main page
that displays the same data repeatedly to all users — e.g., a static list
of topical headlines. The specified cache duration would apply only
to this exact headline request.

Preloading the cache

the Cache_Duration

field:

Analytic

Collection

CompanyList

InstrumentFundamental

InstrumentinterdayHistory

InstrumentintradayHistory

InstrumentTickHistory

LookupByAlias

LookupByName

LookupBySymbol

NewsCategories

NewsSearch

NewsSources

NewsStory

In some situations, a performance gain in Instrument retrievals can be realized by "preloading"

the cache. The idea is simple: if a particular vehicle is likely to be requested, subscribe to it

before the request is actually issued. The difference in retrieval time is quite dramatic. Pulling

existing instrument data from the MIX server's cache typically takes one or two hundredths of a

page 5

REUTERS

second. By comparison, starting a new subscription and waiting for the data may take half a
second or more.

The preload list

On the MIX server, preloading uses a manually maintained list of symbols for the most popular
instruments and collections. Some preload lists may contain thousands of symbols. The
actual preloading begins when any client loads a page from within the virtual directory
associated with the package (e.g., www.example.com/package/), and the process is staggered
S0 as not to overwhelm the server or channel. Then, at regular intervals, subscriptions to all
the listed symbols are updated so that they don’t expire.

The value of list-based preloading is limited. Once a vehicle has been requested — say, during
the morning's opening bell rush — it has a good chance of being served from cache all day, so
only the first request for an item shows improvement from preloading. The preload list may be
most useful at a small site without an RLSR, where it can reduce the strain caused by large
numbers of simultaneous new subscriptions during the morning rush.

Preloading a list on the MIX server is gradually being deprecated. Instead, we suggest using a
long cache duration on the RLSR, to maintain ongoing subscriptions to popular vehicles at that
level, and setting short cache durations on the MIX servers. Because of the large user pool of
an entire server farm, cache hits are very likely on the RLSR, so this gives the MIX server
rapid data access without high caching overhead.

For more on the preload list, see the "Packages and User Login" section of the MIX
Developer's Guide, plus the various relevant installation guides. For more on how an RLSR
caches vehicles, see the Instrument chapter of the MIX Developer's Guide.

Preloading while executing a page
Preloading can also be implemented on the fly when using objects that

Objects that
support preloading:
Collection

return a list of instrument symbols. A user who requests such a list is
likely to want details on at least one of the listed vehicles. So these

objects support a feature called "preloading”, which is enabled by CompanyList

setting the object's ".Preload" field to "True". When preloading is LookupByAlias

enabled, the MIX server automatically subscribes to any vehicle

LookupByName
returned by the search, so a subsequent request for this instrument can LookupBySymbol
be serviced very quickly from the cache. (Or, at least, the vehicle's most Ranking

popular fields, as explained in the section on "Prefetching fields".)

This type of preloading does not add the vehicle to the server's preload list.

Prefetching fields

At the time of this writing, eight MIX objects are enabled for "prefetching”. These objects are
designed to retrieve from the central system only a subset of their available fields, and they

Optimizing Data Retrieval in MIX

July 2005 page 6

REUTERS

offer a ".Prefetchlist" field in which additional fields can be specified for retrieval. Such objects
automatically conserve bandwidth by reducing the amount of data transmitted, but if improperly
used, they can create idle time by causing additional trips upstream for data. We'll look at the
prefetch concept in three contexts, as follows.

Large fieldtrees

The Instrument object has hundreds of fields. Clearly it would be a waste to transmit all of
these fields when most applications need only a few of them. For this reason, the Instrument
object by default retrieves only a standard set of the most commonly-used fields. If an
application attempts to reference one of the unretrieved fields — with Value(), Display(), or most
other helper methods — the MIX server has to send upstream for the missing fields. On the
other hand, if all the needed fields are declared in ".Prefetchlist" in advance of the Retrieve()
call, they can all be acquired in a single trip. This results in less trips and less idle time,
improving page speed and overall server performance.

Historically we have not documented the list of fields that are included in the "standard set", as
this may be subject to changes which could dramatically affect performance. The suggested
best practice is to list in the ".Prefetchlist" field all the Instrument fields that will be displayed in
the page — and, of course, avoid listing any fields that aren't actually used.

Once an additional field is added to a subscription — via a display method or the ".Prefetchlist”
field — the server will continue to receive data for that field until the entire subscription expires.

High volume

In its dynamic mode, NewsSearch works much like Instrument: the MIX server streams
headlines to a large number of clients from a single subscription that brings in the entire
Reuters universe of headlines. (Static headline requests, in contrast, go to the central
database for request/response service.) This creates a lot of wire volume. To save bandwidth,
the Symbol field and several category fields are by default not included in the subscription.
These are not large fields, but because the volume is so high, the savings is significant. If
these fields are to be used in a page, they should be specified in the ".Prefetchlist" field —
otherwise, an additional round trip will be made every time one of them is displayed.

A similar implementation of ".Prefetchlist” is being considered for the new InstrumentTickSeries
object, which does not have a large fieldtree but does have more fields than are needed by
most applications, and like Instrument and NewsSearch is a subscription-based, high-volume
object oriented to high performance.

Large fields

Other objects that support prefetching have relatively small fieldtrees that include one or two
large fields. This is the case with some simple "lookup" objects — LookupByAlias,
LookupByName, LookupBySymbol, and CompanyList. With these objects, bandwidth is
conserved by not retrieving the lengthy description field unless it is needed.

Optimizing Data Retrieval in MIX
July 2005 page 7

REUTERS

A more dramatic example of this principle is found in the NewsStory object. A retrieval of
NewsStory returns peripheral information such as date and time, news category, and so on.
But by default, it does not return the actual body of the story. Since the story is usually the
largest part of the fieldtree, this saves a lot of bandwidth. If the body is to be displayed or
otherwise referenced, it should be specified in the ".Prefetchlist” field to avoid causing an extra
round trip.

It should be clear to the reader that fields which can be mentioned in ".Prefetchlist" should
always be listed there if they are to be referenced, to save the extra round trip. Conversely,
fields that will not be used should not be prefetched.

Other notes

The UConvert object, which converts a string's encoding format, uses a ".Prefetchlist” field to
specify the output format. This is essentially an API-consistent way to set up the object, and is
unrelated to the primary use of ".Prefetchlist" discussed here. In fact, UConvert never goes
upstream for information, but simply performs conversions locally on the MIX server.

The FixedIncomeCalculation and FixedincomeSearch objects, which have even more possible
fields than Instrument, don't have a standard set of fields that are returned by default, so they
don't use a ".Prefetchlist” field. Instead, these objects use an "optional fields" model, in which
the application must specify every desired data field before calling Retrieve(). There's no trick
for improving on this automatic efficiency. The "optional fields" feature is only mentioned here
for clarity and completeness.

More information on using ".Prefetchlist" and optional fields be found in the relevant object
chapters of the MIX Developer's Guide. Note that the prefetch features are unlikely to be
supported with other namespaces — e.g. ".Prefetchlist" is not supported with Instrument when
using the RAPID namespace, or with NewsSearch when using the NDS namespace.

Summary

e A page processing thread has idle time while waiting for a data request to come back
from the network. When all threads are idle at the same time, the server is idle —
even if it has other client requests waiting to be assigned a thread. If idle time is
reduced, the user has a faster experience and the server supports more users.

¢ Always use pipelining technique in objects that support it. Generally, this means
issuing all the Retrieve() calls before issuing any display calls, and calling the slowest
retrieval first.

e Increasing a site's cache duration may increase the cache hit rate — especially with
auto-login packages, where everyone has the same user number. With
request/response data, this results in faster response, but slightly older data. With
subscription data, this keeps more subscriptions immediately available, at some cost
in space and bandwidth.

Optimizing Data Retrieval in MIX
July 2005 page 8

Optimizing Data Retrieval in MIX
July 2005

REUTERS

e Similarly, in a frequently-accessed page that displays popular data, such as the main
page of a public site, it may be good to increase the cache duration for the individual
object instance.

e At sites that do not use an RLSR, use preloading at the package level to smooth out
the server response during new-subscription rushes, e.g., at the morning bell. As
with an increase in cache duration, remember that this will increase a site's use of
cache and bandwidth.

e In objects that support prefetching, pay close attention to the fields used, and declare
them as appropriate in the ".Prefetchlist" field before issuing any Retrieve() calls.

Sample scripts

Pipelining example

Below is a sample ASP script that compares non-pipelined versus pipelined requests for an
array of instances of the InstrumentFundamental object. The difference between the two
average retrieval times gives an approximation of the site's average latency during the time the
script was executing. Actual results will vary but the performance effect of the pipelining
technique should be clear. With that in mind, the script output should look something like this:

Retrieving... 50 symbols.
Average pipelined time: 0.011 seconds.
Average non-pipelined time: 0.059 seconds.

Script 1: Comparison of pipelined and non-pipelined requests for InstrumentFundamental.

<%@ Language = JScript %><%
function CurrentTime() {
var t=new Date();
return(t.valueOf());

}

var UserObj = Server.CreateObject("Bridge.User.3");

var LookupObj = UserObj.CreateObject("Bridge.LookupByName.3");
var FundObj = new Array();

var TestSize = 50; /l number of test instances

/I Get an arbitrary list of symbols from LookupByName
Response.Write("Retrieving... ");

Response.Flush();

LookupObj.Setlnput(".Name", "a");
LookupObj.Setlnput(*.Max_Count", TestSize);
LookupObj.Retrieve();

page 9

Optimizing Data Retrieval in MIX
July 2005

REUTERS

TestSize = LookupObj.InstanceCount(".Lookupresult");
Response.Write(TestSize + " symbols.");
Response.Flush();

/I Give them to the InstrumentFundamental objects for retrieval

for (var i=0; i<TestSize; i++) {
FundObj[i] = UserObj.CreateObject("Bridge.InstrumentFundamental.3");
FundObj[i].Setinput(".Instrument", LookupObj.Value(".Lookupresult[" + i + "].Symbol"));

}

/I "PIPELINED" (CONCURRENT) RETRIEVAL / DISPLAY
StartTime = CurrentTime();
for (var i=0; i< TestSize; i++) {

FundObij[i].Retrieve(); /| ***** RETRIEVE
}
for (var i=0; i< TestSize; i++) {

var a = FundObj]i]. Display(".Instrument"); [l ***** DISPLAY
}

Response.Write("
Average pipelined time: *);
Response.Write(Math.round((CurrentTime()-StartTime)/TestSize)/1000 + " seconds.");
Response.Flush();

/I "NON-PIPELINED" (CYCLICAL) RETRIEVAL / DISPLAY
StartTime=CurrentTime();
for (var i=0; i< TestSize; i++) {
FundObij[i].Retrieve(); [***** RETRIEVE
var a = FundObj[i]. Display(".Instrument"); [***** DISPLAY
}
Response.Write("
Average non-pipelined time: ");
Response.Write(Math.round((CurrentTime()-StartTime)/TestSize)/1000 + " seconds.");
Response.Flush();

%>

Instrument subscription time

The following sample script can be used to estimate the time required to retrieve data for an
"unmarked" vehicle — that is, a vehicle that is not already in the cache. It requests data for
some vehicles that are unlikely to be found in the cache, then requests the same data again.
The times for the two retrievals should be very different, because the first retrieval has to go
upstream for the data, and the second retrieval doesn't.

Note that this is not a demonstration of the time required for a normal request/response "round
trip" from the MIX server to the central system, because Instrument data does not use the
request/response pattern. Rather, the first retrieval shows the time required to subscribe to a
vehicle and receive the first update, and the second retrieval shows the time required to fetch
the latest data from the cache. Actual results will vary from one site to another, but will likely
look something like this:

page 10

Optimizing Data Retrieval in MIX
July 2005

REUTERS

Retrieving... 20 symbols.
1st run, average retrieval time: 0.327 seconds.
2nd run, average retrieval time: 0.01 seconds.

Obviously, once the script has been run, the requested vehicles will remain in the cache for a
while, so subsequent tests will give the same results for the 1st and 2nd runs. For this reason,
several extra sets of symbols are provided as comments in the script, so that the test may be
run several times in a brief period.

It's interesting to note that uncommenting the Display line in the RetrievalTime function of this
script makes no significant difference in performance. This confirms that the Instrument object
blocks at Retrieve(), not at Display().

Script 2: Getting a sense of the subscription time for instrument data.

<%@ Language = JScript %><%

function CurrentTime() {
var t=new Date();
return(t.valueOf());

}

function RetrievalTime() {
StartTime = CurrentTime();
for (var i=0; i<TestSize; i++) {
InstrObj.Retrieve();
/IResponse.Write(InstrObj.Display("Instrument[" + i + "]") + "
");

}
return Math.round((CurrentTime()-StartTime)/TestSize)/1000;

}

var UserObj = Server.CreateObject("Bridge.User.3");
var InstrObj = UserObj.CreateObject("Bridge.Instrument.3");

var TestSize = 7; // Number of vehicles in sample
var VehicleStr; // Uncomment a different string below if running more than once.
VehicleStr = "us;AAMC|us;APRDO|us;ATXAN|us;AVOC|us;CBYAA|us;CCIG|us;CEDNM";
/IVehicleStr = "us;CILTL|us;COFF|us;CUMD|us;CYSM|us;DSR|us;EGYKO|us;EYGUO";
/IVehicleStr = "us;EYLAP|us;EYMSN|us;FBAK|us;FHCS|us;GOKN|us;GSU,B|us;IFST";
/IVehicleStr = "us;MEW X|us;MNESP|us;MPRWL|us;MWPSL|us;NAPE|us;NMS|us;PFIT";
/IVehicleStr = "us;PUSH|us;RDGA|us;SPTM|us; THLM|us;UFBC|us;WREGO|us;WSPBP";
var Vehicles = VehicleStr.split("|");
for (var i=0; i<TestSize; i++) {

InstrObj.SetIinput(“Instrument[* + i + "]", Vehicles][i]);

}

var Averagel=RetrievalTime();
Response.Write("1st run, average retrieval time: " + Averagel + " seconds.
");
var Average2=RetrievalTime();

page 11

REUTERS D

Response.Write("2nd run, average retrieval time: " + Average2 + " seconds.
");

if (Averagel/Average2 <1.2){ /I if the difference is not significant...
Response.Write("
Try a different set of vehicles.");

}

%>

Optimizing Data Retrieval in MIX

©Reuters 2005. Reuters and the sphere logo are trademarks and registered trademarks of the Reuters group of companies
around the world. The text contain in this document has no legal effect and does not form part of any contract and no reliance

REUTERS D

should be placed upon statements contained herein.

